Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.
نویسندگان
چکیده
Hydrophobins self assemble into amphipathic films at hydrophobic-hydrophilic interfaces. These proteins are involved in a broad range of processes in fungal development. We have studied the conformational changes that accompany the self-assembly of the hydrophobin SC3 with polarization-modulation infrared reflection absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and circular dichroism, and related them to changes in morphology as observed by electron microcopy. Three states of SC3 have been spectroscopically identified previously as follows: the monomeric state, the alpha-helical state that is formed upon binding to a hydrophobic solid, and the beta-sheet state, which is formed at the air-water interface. Here, we show that the formation of the beta-sheet state of SC3 proceeds via two intermediates. The first intermediate has an infrared spectrum indistinguishable from that of the alpha-helical state of SC3. The second intermediate is rich in beta-sheet structure and has a featureless appearance under the electron microscope. The end state has the same secondary structure, but is characterized by the familiar 10-nm-wide rodlets.
منابع مشابه
Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry.
The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate alpha-helical state to the stable end form called the beta-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the a...
متن کاملStructural and functional role of the disulfide bridges in the hydrophobin SC3.
Hydrophobins function in fungal development by self-assembly at hydrophobic-hydrophilic interfaces such as the interface between the fungal cell wall and the air or a hydrophobic solid. These proteins contain eight conserved cysteine residues that form four disulfide bonds. To study the effect of the disulfide bridges on the self-assembly, the disulfides of the SC3 hydrophobin were reduced with...
متن کاملOligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly.
Hydrophobin SC3 is a protein with special self-association properties that differ depending on whether it is in solution, on an air/water interface or on a solid surface. Its self-association on an air/water interface and solid surface have been extensively characterized. The current study focuses on its self-association in water because this is the starting point for the other two association ...
متن کاملStructural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces.
Hydrophobins are small fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes that, in the case of Class I hydrophobins, can be disassembled only by treatment with agents like pure trifluoroacetic acid. Here we characterize, by spectroscopic techniques, the structural changes that occur upon assembly at an air/water interface and upon assembly on a h...
متن کاملMolecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface.
Hydrophobins are small ( approximately 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2002